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ABSTRACT 

APPLYING MACHINE LEARNING ALGORITHMS FOR THE ANALYSIS OF 

BIOLOGICAL SEQUENCES AND MEDICAL RECORDS 

SHAOPENG GU 

2019 

The modern sequencing technology revolutionizes the genomic research and 

triggers explosive growth of DNA, RNA, and protein sequences. How to infer the 

structure and function from biological sequences is a fundamentally important task in 

genomics and proteomics fields. With the development of statistical and machine 

learning methods, an integrated and user-friendly tool containing the state-of-the-art data 

mining methods are needed. Here, we propose SeqFea-Learn, a comprehensive Python 

pipeline that integrating multiple steps: feature extraction, dimensionality reduction, 

feature selection, predicting model constructions based on machine learning and deep 

learning approaches to analyze sequences. We used enhancers, RNA N6-

methyladenosine sites and protein-protein interactions datasets to evaluate the validation 

of the tool. The results show that the tool can effectively perform biological sequence 

analysis and classification tasks. 

Applying machine learning algorithms for Electronic medical record (EMR) data 

analysis is also included in this dissertation. Chronic kidney disease (CKD) is prevalent 

across the world and well defined by an estimated glomerular filtration rate (eGFR). The 

progression of kidney disease can be predicted if future eGFR can be accurately 

estimated using predictive analytics. Thus, I present a prediction model of eGFR that was 

built using Random Forest regression. The dataset includes demographic, clinical and 
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laboratory information from a regional primary health care clinic. The final model 

included eGFR, age, gender, body mass index (BMI), obesity, hypertension, and diabetes, 

which achieved a mean coefficient of determination of 0.95. The estimated eGFRs were 

used to classify patients into CKD stages with high macro-averaged and micro-averaged 

metrics. 
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CHAPTER 1: Introduction for Sequencing Data Analysis 

1.1 Next-Generation Sequencing 

The appearance of next-generation sequencing (NGS) technology has 

significantly improved the quantities and qualities of biological sequences [1]. NGS 

provides advanced technology with many advantages: ultra-high throughput, speed, 

scalability and friendlily cost [2]. With NGS, the duration for sequencing an entire human 

genome is reduced from a decade to a single day [3] and its cost dropped from $300000 

to less than $1000 [4]. The most recent released version, 232 of GenBank in NCBI 

contains 213,387,758 sequences and WGS in NCBI includes 1,022,913,321 sequences 

[5]. Analyzing biological sequences help researches to explore the structural and 

functional properties of sequences [6, 7], disease diagnosis [8-10], drug target 

development, biotechnology [11] and many others.  

1.2 Machine Learning in Sequencing Data Analysis 

Computational biological sequences analysis tools are urgently needed because an 

ever-widening gap emerges between these data and their annotations. Recently, applying 

machine learning algorithms for the analysis of biological sequences became a popular 

trend [12]. In essence, many problems can be considered as a binary or multi-class 

prediction tasks [13, 14], include DNA N6-methyladenosine site [15, 16], RNA N6-

methyladenosine site [17], RNA-binding protein identification [18], protein function site 

[19], protein fold recognition [20, 21], protein-protein interaction prediction [22-24], etc.  
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1.3 Feature Extraction of Sequencing Data 

Billions of short raw reads are generated for each sample through NGS in FASTA 

data format [25], which cannot directly be used for classification purposes. Thus, the step 

of feature extraction is required to transform reads of sequences to the mathematical data 

matrix using different approaches based on sequencing, physicochemical, evolutional and 

structural properties [26]. 

1.4 Feature Selection 

 With an increasing number of classification algorithms has been introduced, 

selecting the most important features to reach accurate and efficient performances 

becomes a new challenge [27]. Some extracted feature vectors show high dimensionality, 

which can cause time-consuming and overfitting issues. Therefore, selecting those 

features that contribute most to classification is an essential step in the sequencing data 

analysis [28]. Some powerful feature selection algorithms that can be used include the 

Chi-squared test [29], SVM-RFE [30], Lasso [31], Pearson correlation [32], ReliefF [33], 

and so on. 

1.5 Dimensionality Reduction 

Besides many supervised methods, some unsupervised learning methods such as 

K-means [34], PCA [35] and TSNE [36], are introduced. Dimensionality reduction can 

project raw feature space with high dimensionality to a new feature space via the linear or 

non-linear combination. Dimensionality reduction and feature selection both can reduce 

the model’s complexity, computational resource cost and execution time, prevent 

overfitting issue and improve the accuracy of prediction to provide more reliable 

predictions. 
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1.6 Model Construction 

Classification is a supervised learning approach to classify new observations 

based on the given data in machine learning. Some popular and well-developed 

classification algorithms are widely used in many different fields, such as SVM [37], 

RandomForest [38], LightGBM [39], XGBoost [40], Adaboost [41] and KNN [42], etc. 

Every classifier has its characters thus there is not a best classifier but only an appropriate 

classifier. Therefore, training multiple classifiers simultaneously can help researchers to 

find the best classifier. 

1.7 Sequencing Data Analysis Tool 

There are several computational tools are available in the public. Some tools 

focus only on extracting features from one or more types of sequencing data. For 

instance, repDNA [43], Pse-in-one 2.0 [44], PyFeat [45] and PROFEAT [46] are tools 

only for feature extraction. To my knowledge, there are three computational tools: 

IFeature [47], iLeran [48] and BioSeq-Analysis2.0 [49] that integrating multiple steps for 

sequencing data analysis, but the integrated classifiers and feature selection methods are 

not sufficient and updated. In addition, deep learning is a very powerful computational 

tool for classification tasks via layer by layer learning [50]. Some popular deep learning 

methods show convincing performances for prediction but they are not included in these 

packages [51]. 
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CHAPTER 2: SeqFea-Learn – An Integrated Python Package for the Analysis of 

Biological Sequences 

2.1 Overall Design of SeqFea-Learn 

To develop a comprehensive pipeline for the classification of biological 

sequences, we integrated 20 feature selection methods, 16 dimensionality reduction 

methods and 13 classification models. In addition, this tool also contains a total of 60 

methods to extract features from DNA, RNA and protein sequences, Figure 1. Compared 

with other software packages, SeqFea-Learn has the following advantages:  

• A large variety of feature selection methods, including regularization, statistics, 

information, tree, and recursive feature elimination-based approaches.  

• 13 classification algorithms include three deep learning approaches.  

• Enhanced graphical visualization of results, including a box plot of classification 

accuracy and ROC curves. 
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Figure 1. The pipeline of SeqFea-Learn. The Python package contains feature extraction, 

feature selection, dimensionality reduction, and model construction from sequences. The 

input is the DNA, RNA or protein sequences in the FASTA format. The outputs will 

provide generated feature vectors, prediction accuracy comparison, and suggestion of the 

best model for researchers. 

2.2 Detailed Methods in SeqFea-Learn 

The DNA, RNA and protein sequence S  with L  residues can be regarded as: 

1 2 1L LS R R R R−=                                                               (1) 

where LR  represents the -L th  residue. 

2.2.1 Feature Extraction 

The step of feature extraction consists of 16 feature extraction methods for DNA 

and 12 feature extraction methods for RNA; 32 feature extraction methods for protein 

sequences, which are shown in Table 1 and Table 2, respectively. 

Table 1. List of 16 DNA feature extraction methods and 12 RNA feature extraction 

methods 

DNA Feature 

Extraction 

Methods 

RNA Feature 

Extraction 

Methods 

Extraction Method Description 

Kmer Kmer DNA or RNA sequence are represented as the 

occurrence frequencies of k neighboring nucleic 

acids [55, 56] 

Reverse 

Compliment 

Kmer 

(RCKmer) 

Reverse 

Compliment 

Kmer 

(RCKmer) 

A variant of Kmer descriptor by removing the 

reverse compliment Kmer [55, 57] 

Pseudo 

Dinucleotide 

Pseudo 

Dinucleotide 

Incorporating the contiguous local sequence-

order and global sequence-order information [58] 
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Composition 

(PseDNC) 

Composition 

(PseDNC) 

Pseudo k-tuple 

Nucleotide 

Composition 

(PseKNC) 

- Extending the PseDNC by incorporating k-tuple 

nucleotide composition [59] 

Dinucleotide 

Based Auto 

Covariance 

(DAC) 

Dinucleotide 

Based Auto 

Covariance 

(DAC) 

Measuring the correlation of the same 

physicochemical index between two 

dinucleotides separated by lag along the sequence 

[60, 61] 

Dinucleotide 

Based Cross 

Covariance 

(DCC) 

Dinucleotide 

Based Cross 

Covariance 

(DCC) 

Measuring the correlation of two different 

physicochemical indices between two 

dinucleotides separated by lag nucleic acids [60, 

61] 

Dinucleotide 

Based Auto-

cross 

Covariance 

(DACC) 

Dinucleotide 

Based Auto-

cross 

Covariance 

(DACC) 

Combining of DAC and DCC [43] 

Trinucleotide 

Based Auto 

Covariance 

(TAC) 

- Measuring the correlation of the same 

physicochemical index between trinucleotides 

separated by lag nucleic acids [43] 

Trinucleotide 

Based Cross 

Covariance 

(TCC) 

- Measuring the correlation of two different 

physicochemical indices between two 

trinucleotides separated by lag nucleic acids [43] 

Trinucleotide 

Based Auto-

Cross 

Covariance 

(TACC) 

- Combining of TCC and TACC [43] 

Nucleic Acid 

Composition 

(NAC) 

Nucleic Acid 

Composition 

(NAC) 

Calculating the frequency of each nucleic acid 

type in nucleotide sequence [48] 

Di-Nucleotide 

Composition 

(DNC) 

Di-Nucleotide 

Composition 

(DNC) 

Containing 16 NAC descriptors [48] 

Tri-Nucleotide 

Composition 

(TNC) 

Tri-Nucleotide 

Composition 

(TNC) 

Containing 64 NAC descriptors [48] 
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Table 2. List of 32 Protein feature extraction methods and their description 

zCurve 

Mathematical 

Formula 

(zCurve) 

zCurve 

Mathematical 

Formula 

(zCurve) 

Calculating three components in three axis in 

genomic sequence analysis [45] 

MonoKGap 

Theoretical 

Description 

(MonoKGap) 

MonoKGap 

Theoretical 

Description 

(MonoKGap) 

Calculating features based on the value of kgap 

[45] 

MonoDiKGap 

Theoretical 

Description 

(MonoDiKGap) 

MonoDiKGap 

Theoretical 

Description 

(MonoDiKGap) 

Calculating features based on value of 4 ∗kgap 

[45] 

Protein Feature Extraction Extraction Method Description 

Amino Acid Composition 

(AAC) 

Calculating the frequencies of 20 kinds of amino 

acids [62] 

Dipeptide Composition (DC) 
transforming the variable length of proteins to fixed 

length feature vectors [62] 

Composition of K-Spaced 

Amino Acid Pairs (CKSAAP) 

Extracting important intrinsic correlation 

information of protein sequences in 

multidimensional space [63-65] 

Grouped Dipeptide Composition 

(GDC) 

A variation of the DPC descriptor which generates 

25 descriptors [66] 

Grouped Tripeptide Composition 

(GTC) 

Another variation of TPC descriptor which 

generates 125 descriptors [66] 

Conjoint Triad (CT) Calculating the frequency of occurrence of each 

triad [67] 

K-Spaced Conjoint Triad 

(KSCTriad) 

Combining CT and considers the continuous amino 

acid units that are separated by any k residues [68] 

Composition (C) 

Transition (T) 

Distribution (D) 

Calculating composition descriptors 

Calculating transition descriptors 

Calculating distribution descriptors [69-71] 
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Encoding Based on Grouped 

Weight (EBGW) 

Capturing the continuity and discontinuity features 

based on grouped weight coding [72] 

Auto Covariance (AC) Measuring the correlation of the same property 

between two residues separated by distance of l[73] 

Moreau-Broto autocorrelation 

(Morean-Broto) 

Measuring the physiochemical and position 

information between two amino acid [74] 

Moran Autocorrelation (Moran) Measuring the physiochemical information of 

adjacent amino acid [75] 

Geary Autocorrelation (Geary) Measuring the physiochemical information and 

generate positive values [76, 77] 

Quasi-Sequence-Order (QSO) Obtaining the sequence distribution patters for a 

specific physicochemical property [78] 

Pseudo-Amino Acid 

Composition (PseAAC) 

Extracting the physicochemical information and 

sequence order information [79, 80] 

Amphiphilic Pseudo-Amino 

Acid Composition (APAAC) 

Extracting the type-2 pseudo amino acid 

composition [79, 80] 

Amino Acid Composition PSSM 

(ACC-PSSM) 

Calculating process of amino acid composition 

PSSM [81, 82] 

Dipeptide Composition PSSM 

(DPC-PSSM) 

Extracting the sequence-order information in the 

PSSM [82] 

Bi-gram PSSM (Bi-PSSM) Calculating the frequency of the transition between 

amino acids [83] 

Auto Covariance PSSM (AC-

PSSM) 

Measuring the correlation of the same property 

between two residues separated by lag [84] 

Pseudo PSSM (PsePSSM) Calculating the PsePSSM feature vector according 

to the pseudo amino acid composition [85] 

AB-PSSM Calculating feature vector based on averaged PSSM 

over blocks [86] 

Secondary Structure 

Composition (SSC) 

Calculating feature based normalized count of 

frequency of the structural motifs present at the 

amino-acid residue positions [87] 

Accessible Surface Area 

composition (ASA) 

Calculating feature based on normalized sum of 

accessible surface area [87] 

Torsional Angles Composition 

(TAC) 

Calculating features based four different types of 

torsional angles [87] 

Torsional Angles bigram (TA-

bigram) 

Calculating feature based on the bigram of the 

torsional angles [87] 
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2.2.2 Feature Selection and Dimensionality Reduction 

 SeqFea-Learn integrated steps of feature selection and dimensionality reduction, 

which are shown in Table 3.  

Table 3. Feature selection and dimensionality reduction methods 

Feature 

Selection 

Method 

Description Dimensionality 

Reduction 

Method 

Description 

Lasso Using Lasso liner model 

to recursively eliminate 

features [31, 88] 

K-means Clustering data by separating 

samples in n groups of equal 

variances [34] 

ElasticNet Using ElasticNet model 

to recursively eliminate 

features [89] 

T-SNE Visualizing high-

dimensional data [36] 

L1-SVM Using SVM with L1 

penalty model to 

recursively eliminate 

features [90] 

Principal 

Component 

Analysis (PCA) 

Linear dimensionality 

reduction using singular 

value decomposition [35] 

CHI2 Retrieving best features 

based on 𝑥2 test [91] 

Kernel PCA 

(KPCA) 

Non-linear dimensionality 

reduction through use of 

kernels [35] 

Pearson 

Correlatio

n (PC) 

Retrieving best features 

based on Pearson 

correlation [32] 

Locally linear 

embedding 

(LLE) 

Reducing projection of data 

which preserves distances 

within local neighborhoods 

[105] 

ExtraTree Using ExtraTree model 

to recursively eliminate 

features [92] 

Truncated 

Singular Value 

Decomposition 

(TSVD) 

Linear dimensionality 

reduction by means of 

truncated singular value 

decomposition [106] 

Structural Probabilities bigram 

(SP-bigram) 

Calculating feature based on structural probabilities 

for each position of amino acid residue [87] 

Torsional Angles Auto-

Covariance (TAAC) 

Calculating feature from the torsional auto-

covariance [87] 

Structural Probabilities Auto-

Covariance (SPAC) 

Calculating feature from the structural probabilities 

[87] 
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xgBosst Using xgBoost model to 

recursively eliminate 

features [93] 

Non-negative 

matrix 

factorization 

(NMF) 

Reducing dimension by 

finding two non-negative 

matrix [107] 

SVM-

RFE 

Using linear SVM model 

to recursively eliminate 

features [100] 

Multi-

dimensional 

Scaling (MDS) 

Reducing dimension by 

modeling data as distances 

in a geometric space [108] 

LOG-

RFE 

Using Logistic 

Regression model to 

recursively eliminate 

features [94] 

Independent 

Component 

Analysis (ICA) 

Reducing dimension by 

finding components with 

some sparsity [109] 

Mutual 

Informati

on (MI) 

Retrieving best features 

based mutual 

information [95] 

Factor Analysis 

(FA) 

Reducing dimension by 

performing a maximum 

likelihood estimate [110] 

Minimum 

Redundan

cy 

Maximum 

Relevance 

(MRMR) 

Selecting features that 

still having high 

correlation to the 

classification variable 

[96] 

Agglomerate 

Feature (AF) 

Recursively merges feature 

instead of samples [111] 

Joint 

Mutual 

Informati

on (JMI) 

Retrieving best features 

based joint mutual 

information [97] 

Gaussian 

Random 

Projection (GRP) 

Reducing the dimension by 

projecting the original input 

space using the Gaussian 

distribution [112] 

Maximum 

Relevance 

Maximum 

Distance 

(MRMD) 

Retrieving best features 

by measuring relevance 

and redundancy between 

features [98] 

Sparse Random 

Projection (SRP) 

Reducing dimension by 

projecting the original input 

space using a sparse random 

matrix [113] 

ReliefF Retrieving best features 

by calculating and 

ranking a feature score 

for each feature [33] 

Autoencoder Reducing the dimension 

using encode and decode 

neural network [114] 

Trace 

Ratio 

Retrieving best features 

by calculating the 

corresponding score in 

trace ratio form [99] 

Gaussian Noise 

Autoencoder 

(GNA) 

Corrupting input before 

being passed to autoencoder 

neural network [115] 

Gini 

Index 

Retrieving best features 

by constructing the 

measure function based 

on Gini-Index [100] 

Variational 

Autoencoder 

(VA) 

Neural network can be 

trained with stochastic 

gradient descent [116] 
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Spectral 

Feature 

Selection 

(SPEC) 

Retrieving best features 

based on structure 

induced [101] 

- - 

Fisher 

Score 

Retrieving best features 

based on scores of 

features under the Fisher 

criterion [102] 

- - 

T Score Retrieving best features 

based on their t-score 

[103] 

- - 

Informati

on Gain 

(IG) 

Retrieving best features 

based on their 

information gain [104] 

- - 

 

2.2.3 Models Construction 

SeqFea-Learn integrated 10 popular classifiers include SVM, KNN, RF, 

LightGBM, XGBoost, Adaboost [118], Extra-Tree, Gaussian Naïve Bayes (GNB) [119], 

GBDT [117]. The tool also integrated three deep learning methods, including deep neural 

network (DNN) [52], convolutional neural network (CNN) [53], and recurrent neural 

network (RNN) [54]. 

2.2.4 Cross-validation and Models Evaluation 

Stratified 5-Folds cross-validator is used for obtaining classification accuracy and 

plotting ROC curves. All models are evaluated using classification accuracy that reflects 

the fraction of correct predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                    (2) 

Most structural and functional of sequences predictions are binary classification and the 

accuracy can be calculated by: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                (3) 

where TP, TN, FP and FN in the above equations represent true positive, true negative, 

false positive and false negative, respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃(𝑖)+𝑇𝑁(𝑖)

𝑇𝑃(𝑖)+𝑇𝑁(𝑖)+𝐹𝑃(𝑖)+𝐹𝑁(𝑖)
                                       (4) 

where i means ith classes.  

2.3 Application of SeqFea-Learn 

Three prediction tasks were performed for DNA, RNA and protein sequences 

respectively to evaluate our tool. These classification performances are comparable and 

even more effective than the state-of-the-art approaches, which indicate our proposed 

python package is competitive for the analysis of biological sequences. 

2.3.1 Enhancers Classification 

Enhancers play an important role in analyzing gene expression. The dataset 

contains we used 1484 enhancer samples and 1484 non-enhancer samples [120]. We 

applied five DNA feature extraction methods: PSTNP, Kmer, pseDNC, BE and DNC to 

construct predictors. We also found that fusing these feature descriptors as one mixed 

descriptor can effectively represent the information and improve classification 

performance. The highest AUCs of 13 predictors are shown in Table 4. Compare to 

BioSeq-Analysis 2.0 (AUC: 0.82), our tool shows a better classification performance. 

Table 4. AUC based on different feature descriptors for enhancer 
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Feature 

Extraction 

Methods 

PSTNP Kmer pseDNC BE DNC Five Descriptors 

Fusion 

Highest 

AUC of 13 

Predictors 

0.90 

(SVM) 

0.84 

(SVM) 

0.84 

(DNN) 

0.83 

(GNB) 

0.84 

(RNN) 

0.91 

(DNN) 

 

 

All of 20 feature selection methods are applied to the fused vector. These selected feature 

vectors are then used to construct 13 classifiers for finding the best. Based on our 

observation, the selected feature vector using the Extra-Tree method can achieve better 

prediction performance, Figure 2. The execution time of modeling is significantly 

reduced, Table 5. 

Table 5. Comparison of number of features and modeling execution time of enhancers 

 Fused feature vector Selected feature vector 

based Extra-Tree 

Number of Features 1296 50 

Execution Time 34m 42s 4m 5s 
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Figure 2. The boxplot of classification accuracies (A) and ROC curves (B) of DNA 

enhancers using various classifiers with Extra-Tree feature selection method. (A) 13 

classifiers all achieve satisfactory accuracy, and SVM, DNN, RNN obtain superior 

performance than other classifiers. (B) The ROC curves of 13 classifier indicate DNN 

and RNN achieved better results. 

2.3.2 RNA N6-methyladenine Sites Prediction 

N6-methyladenosine (m6A) refers to methylation of the adenosine nucleotide acid 

at the nitrogen-6 position. It is highly related to a series of biological processes, such as 

A

B
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splicing events, mRNA exporting, nascent mRNA synthesis, nuclear translocation and 

translation process [17]. The m6A dataset contains 2614 sequences, where 1307 

represents true methyladenosine sites, and the remaining 1307 are false methyladenosine 

sites. BioSeq-Analysis2.0 achieves 0.73 AUC with RandomForest classifier. Similarly, 

the fused feature vector shows a better classification performance, Table 6. After the step 

of feature selection and model construction, the vector using the ReliefF feature selection 

method displays better predictions, Figure 3. 

Table 6. AUC based on different feature descriptors for RNA N6-methyladenine sites 

Feature 

Extraction 

Methods 

PSTNP PseDNC DNC TNC MonoKGap Five 

Descriptors 

Fusion 

Highest AUC 

of 13 

Predictors 

0.88 

(SVM) 

0.69 

(DNN) 

0.68 

(SVM) 

0.71 

(DNN) 

0.66 

(DNN) 

0.89 

(SVM) 

 

Table 7. Comparison of number of features and modeling execution time of RNA 6mA 

data 

 Fused feature vector Selected feature vector 

based Extra-Tree 

Number of Features 186 50 

Execution Time 6m 13s 4m 26s 
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Figure 3. The boxplot accuracies (A) and ROC curves (B) under different classifiers on 

RNA N6-methyladenine sites dataset via ReliefF feature selection. (A) The boxplot of 13 

classifiers and deep learning methods achieve better performance and the KNN is the 

worst. (B) The ROC curves of 13 classifier and DNN, CNN and RNN obtain the best 

prediction performance. 

2.3.3 Protein-protein interactions prediction 

The analysis of protein-protein interactions (PPIs) can help to understand the protein 

function, construct the complete interactome and study the signaling pathways. In this 

A

B
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section, the dataset includes 5594 PPI samples and 5594 non-PPI samples [153]. We 

fused CTDC, CTDT, CTDD, EBGW, Geary, PseAAC, PsePSSM, abPSSM to obtain the 

feature representation information. After comparing all selected feature vectors’ 

predicting performances (Table 8 and 9), the MRMR feature selection method shows a 

better performance, Figure 4. 

Table 8. AUC based on different feature descriptors for protein-protein interactions data 

Feature 

Extraction 

Methods 

CTDC CTDT EBG

W 

Geary PseAAC PsePSSM abPSSM Five 

Descriptors 

Fusion 

Highest AUC 

of 13 

Predictors 

0.92 

(CNN) 

0.96 

(RF) 

0.96 

(GBDT) 

0.91 

(RNN) 

0.95 

(DNN) 

0.96 

(LightGBM) 

0.94 

(DNN) 

0.98 

(LightGBM) 

 

Table 9. Comparison of number of features and modeling execution time of PPIs 

 Fused feature vector Selected feature vector 

based MRMR 

Number of Features 2066 200 

Execution Time 1006m 20s  110m 30s 
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Figure 4. The boxplot accuracies (A) and ROC curves (B) under different classifiers on 

protein-protein interactions dataset via MRMR feature selection. (A) The boxplot of 13 

classifiers and LightGBM achieve better performance and the GNB is the worst. (B) The 

ROC curves of 13 classifiers and LightGBM and xgBoost obtain the best prediction 

performance. 

 

A

B
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2.4 Summary and Conclusion 

With the rapid increase of DNA, RNA and protein sequences, the analysis and 

process of the biological sequences are urgently needed. Therefore, we developed an 

intuitive and comprehensive Python package and web server called SeqFea-Learn to 

perform steps of feature extraction, feature selection, dimensionality reduction, and 

model construction to predict the structure and function of unseen sequences. SeqFea-

Learn for the first time integrated 20 types of feature selection methods and 16 kinds of 

dimensionality reduction approach to deal with dimensionality disaster and prevent 

overfitting issues. It also offers 10 popular classifiers and 3 deep learning frameworks to 

satisfy users’ needs. The tool will generate visible results to provide a user clear idea to 

compare and select the best classifier. To further test the validity, we perform three 

predicting tasks: enhancers, RNA N6-methyladenine sites and protein-protein 

interactions prediction. Integrated feature selection and dimensionality reduction methods 

reduce as much as 80% modeling time. These classification performances indicate 

SeqFea-Learn is an effective and accurate biological sequencing analysis tool compared 

with other state-of-the-art approaches.  
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CHAPTER 3: Predicting Outcomes of Chronic Kidney Disease from EMR Data Based 

on Random Forest Regression 

3.1 Chronic Kidney Disease and eGFR 

 The increasing incidence of chronic kidney disease (CKD) in the United States 

and around the world lays an enormous burden on healthcare [121, 122]. By December 

2015, there were 703,243 prevalent patients with End Stage Renal Disease (ESRD), with 

the unadjusted incident rate of 378 per million [123]. In 2017, there were approximately 

500,000 patients on different dialysis modalities (91% are on hemodialysis), 20,000 

received transplants [123]. Treatments that are effective in patients with advanced CKD 

also increase health care costs and lead to adverse effects [124]. Thus, it is essential to 

identify earlier stage CKD and prevent its progression to ESRD [125]. However, the 

biggest challenge is that most people do not have any signs or symptoms in the early 

stages and go undetected until an advanced stage. 

Early identification and targeted intervention of CKD have attracted considerable 

attention from clinicians and researchers since both have the potential to reduce the 

number of patients progressing to ESRD and lower the mortality rate related to CKD and 

associated healthcare costs [126]. With the growing availability of Electronic Medication 

Record (EMR) data, various predictive models for disease progression have been 

developed to facilitate the decision-making process of health care providers [124, 127, 

128]. Choi et al. classified disease progression models into two categories based on the 

extent of targeted diseases: models focusing on a specific disease and those focusing on a 

broader range of conditions. Among those disease-specific progression models, some are 

validating specific hypotheses of disease progression based on experts’ knowledge [124, 

129, 130], while others are driven by the application of advanced statistical methods [131-
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133]. Approaches that can be generalized to model the progression of multiple diseases 

have been proposed, where statistical methods and machine learning techniques are 

widely used [134, 135]. For kidney disease, different models have been developed in 

predicting CKD stages to ESRD over time and in predict variations of GFR in patients 

[126, 128, 136, 137].  

Estimated glomerular filtration rates (eGFRs) have been used in primary care to 

assist the early detection and staging of CKD [138, 139]. The eGFR formula [140] is: 

𝑒𝐺𝐹𝑅 = 141 ∗ min (
𝑆𝐶𝑟

𝐾
, 1)

𝛼

∗ max (
𝑆𝐶𝑟

𝐾
, 1)

−1.209

∗ 0.993𝑎𝑔𝑒 ∗ 1.018[𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒] ∗

 1.159[𝑖𝑓 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛]                                                                                      (5) 

where eGFR (estimated glomerular filtration rate) = mL/min/1.73 m2; SCr (standardized 

serum creatinine) = mg/dL, κ = 0.7 (females) or 0.9 (males), α = −0.329 (females) or 

−0.411 (males), min = indicates the minimum of SCr/κ or 1, max = indicates the 

maximum of SCr/κ or 1, and age = years.  

Although routine reporting of eGFR had positive effects in clinical practice, 

including prevention of CKD progression and reduction of CKD related complications, 

there are still concerns in its negative effects caused by overdiagnosis [138]. Studies have 

begun using an alternative measurement, such as eGFR decline derived from eGFR, to 

evaluate and predict CKD progression [141, 142]. Researchers investigated the 

association between eGFR change and ESRD risk and mortality risk respectively, where 

age and gender factors were taken into account [141, 143, 144]. Large eGFR decline were 

associated with greater hazard ratios of ESRD in several clinical trials [145, 146]. 

However, a smaller eGFR changes, which is a reflection of the short-term treatment 

effect of kidney disease, is underexamined [141]. 
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3.2 Machine Learning in EMR Data Analysis 

The application of statistical models and machine learning techniques have been 

rapidly growing in estimating health and disease outcomes [147]. Cerqueira et 

al.developed a model using the Cox proportional hazard regression in predicting the risks 

that pre-dialysis pediatric patients progress to ESRD from CKD [128]. Decruyenaere et 

al. compared the performances of machine learning methods with logistic regression in 

predicting the occurrence of delayed renal graft in renal transplant patients [148]. Their 

results showed that support vector machine outperformed logistic regression in terms of 

sensitivity. Kumar compared six machine learning classifiers (Random Forest, Sequential 

Minimal Optimization, NaiveBayes, Radial Basis Function, Multilayer Perceptron 

Classifier, and SimpleLogistic) in CKD classification and identified that Random forest 

outperformed the other classifiers [149]. 

Since GFR is the best test in measuring the level of kidney function [123, 126], the 

renal function of a CKD patient can be predicted if their GFR variations can be predicted. 

Consequently, the time to reach GFR thresholds corresponding to stages of CKD can be 

anticipated. An integrated expert system has been used in predicting future GFR based on 

selected clinical variables and demonstrated reliable accuracy [126]. However, there is 

still a lack of efficient methods for predicting the individual level timeframe of CKD 

progression. Specifically, Random Forest Regression, featured with a reduction in 

overfitting and less variance, has not been used to predict the progression of renal 

function yet. This study predicted future eGFR values using Random Forest regression 

based on real-world EMR data representing the general population in the upper Midwest. 

The main aim of this study is to propose an efficient and reliable clinical tool that allows 
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us to identify patients at risk of ESRD at an earlier stage.  Such a tool can offer primary 

care physicians the opportunity to preemptively suggest the preventive strategies that can 

attenuate the development of this challenging disease in patients that reside in our 

agricultural communities. 

3.3 Methods 

3.3.1 Data Acquisition 

 The dataset used in this study comes from real-world clinical data. We built up a 

cohort consisting of 120,495 patients aged from 20 to 80 in Sioux Falls, SD, region that 

receiving primary care from Sanford Health. By consulting with the nephrologist, we 

pulled out data elements influencing GFR variations for this cohort from the 

comprehensive Sanford EMR database for years 2009–17. None of the identifiable 

information was extracted to protect patients' privacy. We are focusing on the progression 

of CKD, so only the “clinical” encounter data was included. Those data elements contain 

patients’ eGFR records for years 2009–17, the ICD-10 codes [150] for CKD, 

Hypertension, Diabetes, and Obesity, and their demographic information comprising 

Age, Gender, and Race. A detailed description of the data elements is given in Table 10. 

Table 10. Predictor and covariate data type breakdown 

Feature Data elements 

Predictor 

eGFR 

All clinical encounter eGFR data with testing dates were pulled out 

for each patient 

Covariates 

Age 

Gender 

Race/Ethnicity 

 

Continuous 

Categorical 

Categorical 
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3.3.2 Data Pre-processing 

 The extracted data were formatted into three separate tables: (1) eGFR table with 

rows representing patients and columns containing eGFR for multiple years; (2) 

Demographic table consisting of demographic information; and (3) Disease table 

composed of diagnosis status of hypertension, diabetes, and obesity. The processing of 

these data tables is illustrated in Figure 5 and described below. 

BMI 

Hypertension 

Diabetes 

Obesity 

Continuous 

Flagged for each patient (ICD-10: I10, I11, I12, I13, I15, I16) 

Flagged for each patient (ICD-10: E08, E09, E10, E11, E13) 

Flagged for each patient (ICD-10: E66.9) 
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Figure 5. Workflow of the data preprocessing, including initial eGFR data, demographic 

and disease information, and data merging and filtering. This process resulted in 61,740 

samples with 15 variables each. 

1. The eGFR table has 120,495 unique patients and 10 columns, each of which 

representing eGFR records in years 2009–18. First, the non-numeric eGFR records 

(e.g. “>90”)) were considered as missing data and marked as “NA.” For patients with 
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more than one eGFR values in a specific year, the median of these values was 

calculated and kept for that year in the table.  

2. More than 95% eGFR records are missing in 2009 and 2010, so data from these two 

years were omitted. Since the data in 2018 was not complete when the data was 

extracted, we also excluded the records in this year. Patient lines were removed from 

the data if they have no more than three available records from 2011 to 2017. The 

final eGFR table has 61,740 unique patients and 7 years eGFR data for each patient 

with at least three eGFR values. 

3. Next, the different CKD stages were determined by eGFR values in the physical 

laboratory. Therefore, the CKD stages true labels were created using eGFR. The 

minimum eGFR value in each of the years between 2011 and 2017 was evaluated 

first, and then the CKD stages labels were produced based on the following equation: 

𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙 𝐶𝐾𝐷 𝑆𝑡𝑎𝑔𝑒 =

{
 
 

 
 

1.  𝑖𝑓 min 𝑒𝐺𝐹𝑅 ≥ 90
2. 𝑖𝑓 60 ≤ min 𝑒𝐺𝐹𝑅 < 90
3. 𝑖𝑓 30 ≤ min 𝑒𝐺𝐹𝑅 < 60
4.  𝑖𝑓 15 < min 𝑒𝐺𝐹𝑅 ≤ 30
5.  𝑖𝑓 min 𝑒𝐺𝐹𝑅 ≤ 15

                        (6) 

4. The true labels were also merged into eGFR matrix based on their index (patient ID). 

5. The current eGFR matrix includes 61,740 unique patients, and each patient has 7 

years eGFR values from 2011 to 2017 and labels for the CKD stage from 1 to 5. The 

final data table was created by merging the eGFR table with the demographic table 

and the disease table by matching their patient IDs. 

 



www.manaraa.com

27 

 

3.4 Construction of Random Forest Regression Model 

 The longitudinal design of this study enables the estimation the future eGFR value 

from the past eGFR values adjusted by clinical covariates. We selected Random Forest 

regression as the primary model because of its efficiency and accuracy to predict 1 year, 

2 years and 3 years eGFRs from the historical eGFR records between years 2011–14. 

Baseline covariates and predictors: The variables included in the analysis were 

baseline eGFR, age, gender, ethnicity, body mass index (BMI), hypertension, diabetes, 

obesity. 

Outcome: eGFR values in the year 2015, 2016, and 2017 were considered as the 

outcome variable. This is based on the consensus that GFR is the best measure of kidney 

function. 

Model development: the inputs of this model are the attributes of the ith patient 

denoted by a vector Xi = (xi1,…, xin) which includes eGFR values from multiple years 

and other covariates listed in Table 1. The output is the future eGFR for the ith patient 

denoted by Gij where j indicating a future year. 

In the computational experiment, we used the processed dataset with 61,740 

unique patients. For building the model in predicting eGFR of 2015, the patient must 

have recorded eGFR in 2015, and at least two recorded eGFR between 2011 and 2014. 

Similar requirements were used in predicting eGFR of 2016 and 2017. Other years’ 

eGFR values were imputed and filled by the median eGFR value of each patient. All 

models were built using scikit-learn package [151]. The parameters of Random Forest 

Regressor were determined using the grid-search method. Only two parameters, number 

of estimators and maximum number of features, were tuned because they can determine 
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numbers of trees in forest and how the tree will split and grow. We also randomly split 

the dataset and repeat the training process five times with different sets to avoid over 

fitting for our models. 

3.5 Assessment of model performance 

3.5.1 Goodness-of-fit 

 The model fit of the proposed Random Forest Regression was measured using the 

coefficient of determination R2 to show how well the fitted eGFR value approximates the 

real eGFR value. R2 is a measure used to represent the percent of variation explained, 

i.e., the proportion of variance in the dependent variable that can directly be attributed to 

variance in the independent variables. An R2 of 1 would indicate all changes we see in 

the dependent variable are caused by changing our independent variables, whereas an R2 

of 0 means no such direct impact. We also checked the residual plot since randomly 

distributed residuals indicate the model fits the data well. 

3.5.2 Discrimination 

 The estimated eGFR values were used to classify patients into different 

CKD stages based on Eq. (1). Both micro-average and macro average were generated to 

illustrate the classification accuracy of the Random Forest model. 

3.6 Results 

 In Random Forest regression analysis, the predicting accuracy was enhanced by 

optimizing the values of hyperparameters, where the default values and the optimized 

values of the hyperparameters were shown in Table 11. The predicted versus observed 

eGFR values in years 1–3 were plotted for both the default and optimized 

hyperparameters in Figure 6. The R2 was increased from default to optimized 
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hyperparameters in each of the three years. The Root of Mean Squared Error (RMSE) in 

Figure 6 illustrated that the optimized hyperparameters provided a more accurate 

prediction that the default values. It is also worse noticing that the prediction accuracy 

decreased over time. With the optimal parameters, we further examined the importance of 

the features included in the analysis whose results were given in Figure 7. It is not 

surprising that previous eGFR records played essential roles than other features since 

eGFR is decreasing continuously over time. Although the information of age and BMI 

are considered in estimating GFR using the eGFR formula, predictions based solely on 

the previous eGFR are not sufficient. Age and BMI, as illustrated in Figure 7, still 

contribute to 4.7–9% to the future three years of eGFR respectively. All the other 

features, including Race, Gender, Obesity, Hypertension, and Diabetes, accounted for a 

total of 2.7–3.9% of the variances. 

Table 11. Hyperparameters used in the Random Forest Regression for the default and 

optimized models. 

 

 Default Optimized 

# of trees 

Max depth 

Max sample split 

Min samples leaf 

Max features 

Bootstrap 

10 

None 

2 

1 

11 

True 

100 

None 

2 

1 

8 

True 
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Figure 6. Goodness of fit based on 𝑅2 of the Random Forest Regression model in 

predicting eGFR in year 1 to year 3 for the default and optimized models. RMSE 

comparison for each year is also provided for the default and optimized models. 

 

Figure 7. Feature importance in predicting eGFR values in years 1-3 using optimized 

parameter values in Random Forest Regression. 
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3.7 Conclusion and Discussion 

 In this study, we proposed a model in predicting future eGFR values, which is 

based on Random Forest regression that can efficiently learn from the real world EMR 

data and accurately predict future patient outcomes. We validated this model on an EMR 

dataset extracted from a health system located in the Great Plains. The computational 

experiment achieved an average R2 of 0.95 over three years with small variation. And an 

88% Macro Recall and a 96% Macro Precision by averaging over three years were 

obtained by dividing patients into different CKD stages using estimated eGFRs. Besides, 

we identified the crucial features that contribute to the variation of future eGFRs, which 

include recent eGFR records, Age and BMI. Therefore, our proposed predictive model of 

eGFR has excellent potential to be developed into a clinical decision support tool to assist 

doctors in providing preventive advice to patients. 

One of the limitations of this work is that only patients with numeric eGFR 

records were included, which exclude those patients without CKD symptoms in the study 

period. However, those excluded patients can serve as a control group whose clinical 

information can be incorporated into the predictive model to adjust the parameter 

estimations. Also, the current study only contained historical eGFRs, demographic 

characteristics, and relevant disease diagnoses. Studies have shown that an individual's 

genetic and phenotypic characteristics both affect their risk in developing kidney disease, 

including genetic mutations, a family history, gender, ethnicity, age, obesity, 

socioeconomic status, smoking, nephrotoxins, acute kidney injury, diabetes mellitus, and 

hypertension [152]. Thus, we are planning to address those issues in future studies to 

improve the practicability of the predictive model of eGFR in support of patient care. 
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APPENDIX: SeqFea-Learn Tutorial 
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